Long Non-Coding RNAs in Cardiac Remodeling.
نویسندگان
چکیده
Cardiac remodeling occurs after stress to the heart, manifested as pathological processes, including hypertrophy and apoptosis of cardiomyocytes, dysfunction of vascular endothelial cells and vascular smooth muscle cells as well as differentiation and proliferation of fibroblasts, ultimately resulting in progression of cardiovascular diseases. Emerging evidence has revealed that long non-coding RNAs (lncRNAs) acted as powerful and dynamic modifiers of cardiac remodeling. LncRNAs including Chaer, Chast, Mhrt, CHRF, ROR, H19, and MIAT have been implicated in cardiac hypertrophy while NRF, H19, APF, CARL, UCA, Mhrt and several other lncRNAs (n379599, n379519, n384640, n380433 and n410105) in cardiomyocyte loss and extracellular matrix remodeling. In addition, MALAT1 and TGFB2-OT1 have been reported to contribute to vascular endothelial cells dysfunction while lincRNA-p21 and lnc-Ang362 to vascular smooth muscle cells proliferation. Thus, manipulation of lncRNA expression levels through either the inhibition of disease-up-regulated lncRNAs or increasing disease-down-regulated lncRNAs represents novel therapeutic strategies for cardiac remodeling.
منابع مشابه
Long non-coding RNAs and their significance in human diseases
Protein-coding genes account for only a small fraction of the human genome and most of the genomic sequences are transcriptionally silent, but recent observations indicate significant functional elements, including non-coding protein transcripts in the human genome. Long non-coding RNAs (lncRNAs) have been defined as transcripts of >200 nucleotides without protein-coding capacity that perform t...
متن کاملThe Roles of Long non-coding RNAs (lncRNA) in Prostate Cancer
Background & Objective: Prostate cancer is a compound condition in which gene expression has altered. Several surveys have revealed that genetic components have been involved in prostate cancer progression. Findings proposed that they can modify a noteworthy portion of disposing of elements, which is associated to the developing prostate cancer in protein coding sequences. The purpose of this r...
متن کاملThe Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملThe Role and Molecular Mechanism of Non-Coding RNAs in Pathological Cardiac Remodeling
Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode proteins. Studies show that ncRNAs are not only involved in cell proliferation, apoptosis, differentiation, metabolism and other physiological processes, but also involved in the pathogenesis of diseases. Cardiac remodeling is the main pathological basis of a variety of cardiovascular diseases. Many studies have shown that...
متن کاملDysregulated Expression of Long Intergenic Non-coding RNAs (LincRNAs) in Urothelial Bladder Carcinoma
Long intergenic non-coding RNA (lincRNA) has been introduced as key regulators of diverse biological processes, including transcription, chromatin organization, cell growth and tumorigenesis. With regard to the potential role of lincRNAs in cancer development, one may postulate that differential expression of lincRNAs could be employed as a tool in cancer diagnosis, prognosis, and targeted ther...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 41 5 شماره
صفحات -
تاریخ انتشار 2017